
"a--

\

2. OvEaVIEW OF TEE PROBLEM AND APPROACH

The Problem

We praumc that the computers upon which a pmq.m D to be ditrihted are interconnected by a :omumnkatiOn actrvOrt,
as ahown in 6gure 1. S i c we are allowing distributioll d library packages and subpmgrmn, our tramlation -tern must provide
8 meum of wcompbhhg the fol!owhg remote opera-

0 A a c g to procedures and functions decked in remote library ani@

0 W i and writing of data objects declared in lcmote library pdagai (and hence stored remotely). rcmotcly a h a d
data b allowed in our model,

0 &king [timcd/cditiondl entry c a b 00 t d a dakrcd in remute library

0 Dcrlaring/dloc.ting (local) vuub&s rbow typa are QLml in remote Gbrary &ea,

0 Elaborating tub whose types are dcclued in remote library prdp(cs,

0 Managing task termination for taah elaborated acmes m d i hndua.

The a p p m h

The 6rst issue that must be considered LY the repmentation d the ditribution. In our system. we write a single program
and place a pragma cdkd SITE before each library unit to apecify the bcation on which that library unit ia to d d e . Far
uumpk, cooskkr a mobile space robot system corubting d awed mobile vekb (d with a robot d 011 it) and u
overdl system contmlkr. If it were d a t e d to have oc S i b contrdkd b crmputer number 2 and t h overdl coatrol using it
(a well as ~ a l other aimihr aystemr) placed on cwqx~ter 1. 8 umpk d tbe r e k t code would look u f d b r r

prrymr SITE (2);
package VEHICLE is

procedure MOVE(..);

end VEHICLE;

P- SITE(1):
with VEHICLE,
pmcdurr CONTROL ir

adn

VEHICLEMOVE(..);

end CONTROL;

188

3. TRANSLATION STRATEGY

In order to solve the problems raised in the previour aectioa the following issues must be resolved:

development of a general remote object wcasing methodology,

0 tramlation of source code references to remote objects.

0 management of other remote acrvKc functions. cg.. creating objmts, and

0 geacrttion of the agents.

The solution to these probknsr, whik W i g to reasooabb clficicnt code. inmh a rather compkx set of multipk pas operatioas
and the generation and use of a number of auxiliary fib of -ntCrmdi.te inforuut*Oa. Thus, a set d utilities a b are needed to
dkw the user to perform t h e e operatiom in a straightforward manner.

By far the mmt compkx of thsc 'usus u the devdopment of a general remote object accessing method. Thi 8 complicated
by the accd to a d d m arbitrarily nested record urd array components and the fact that compolwnt pointers may point to
e a l l y nested records or mays on other p r o c m . We thm concentrate our dhcusri~a 011 nvt tm dating to object =cess.
The solution to mast of the other -kuu f o l h the d u t i o a of thb probkm in a reasonably straQhtfomrd manner.

The structure of the agents b critical to aolving this p b k m , and ia generally in three puts: 1) ckmcnts to access code
objects. 2) c k m n t s to nunage the a d d m chain Wkg through qulli6ed names of records and arraya. acid 3) ekments to
manage other secrrricu The interpmcasor mail system and

We begin thii section with a dhcussioa of the overall agent strprt tue and its nsc for accessing code objects. and then dbcnm
relate? important mm of access v u fully quliified n-. the pastrl -3 structure. and the t-lath pocs.

structure b cknely integrated with the structure.

Agent Structure

As mntioacd in the previous uction. thre k i d of agents are generated whenever a library unit spccifkatP. in encountered
by the pretruultor: a local agent, a remote agent, and 8 poiqter went. Euh agent b generated as a rparUe p u k e , and
assigned a unique n u n that b derived from the source p.Ltut name. The agents CM be generated simply f m the package or
s u b p m q u n rpcci&ations.

The tcnra &rd and n m d r agent are urd with rrspcct to the pmcearor W i n g the library unit which they -resent. That
is, the bcd agent d oo the same node as the unit it w t s , w h i rbe remote yeat resids at each& mde der-
mc*q the unit. Thus. a remote vtion of some kid begirts with tbe ref-& unit making a call (dkt i t b p r o c d by the
p m t d t a r) to the r r w agent of the unit b e i q = c a d . For eumpk. if tbc cell coatdlcr CONTROL nukes a call b
VEIiICLE.MOVE(..). the translated procedure CONTROL? nvLs a cal l to t h remote agent VEHICLLREKACENT. We
thus comickr remole agents h t . %

a

a

0

”be local agents are the mt complicated d the tbra ageat typa. Their taak m to m i c e rcquak from mnote a i t u need4
to accas data objects. subprograms. or task entria. A bul agent cmskta d N+2 h k a where N b the t0t.l number d functioa,
procdurrr. and t u k atria. cwrrincd in the source speci&atbn d the unit the ycnt b helping to reprsmt. One d t b t.rb
b u.#hed with each d th aforcmcntioacd subprogrum and t u k eatria.

one d the remaining two . S k s is designated as thbcd ycnt Uintd. ThL task connit. dasiagkbop that req-
masage records from the ptd service (via a t u k entry call), interpret. the request, and drpatcha the rcqc#t b the appro
priate h d k r (task or procedure) mtbm the local -a requesting =cam to data objects, are mewiced immaliae
w i t h i the nvin task by calling a CETPUT procedure (dcrrribed below) and an i m m c d i reply is sent.

with PACKACENAME; pukage beiig repracnkd

m
task body AGENTMAIN b
M: MESSAGE-TYPE;

b P
POSTAL.MAILEOX.GET(M); - - -
case M.OFUENUM is - - Branch according to object name.

- - Object referencee
wben NAME1 => GETPUT(M. P A C K A G M A M E N A M E I) ;

wbcn NAMEK => CETPUT(M. PACKAGENAME”MEK); - - S u b p m m cdh and tuk ~ n t r i s
wben N A M E K l = > MANACERDEPOSIT,YAMEKl(M);

when N A V E 3 => MANACERDEPOSITJAMLN(M);
end c u e ;
SENDRETURN(M);

end bop;
end AGENTMAIN:

T h e h dutrution h only for a- dbtributed pukage. k W y . the unmqe type d becmbcddsd in a yet ume
general d having 8 mieat put far cwh dktniuted package. d the actual code would be slightly more i n m i d .

It k imperative that the nvin 1.rL not be Motked far it p m i d a omcumnt ucem to d object. and typa in the specikatn
of the unit it rrprrmta, urd if bbckmg occurred hm. otber, pade l . rcqoatr could be delayed. In particolt, the agtnt rrrmt
& be bhked by a unit it calk o. b&Kd a lcmDtt c k n t , i c d occar if the agent directly cdkd &e unit (the sub-
C d k d &k. for hstaoce .bccombbcttdaamI/O.nit). I l r a t i w h y a U i . r r r i . ~ r i t h c u h s ~ r a d t . i t
cntq. T b r d task pka the -e d r t d in abaffer, hy c d b g anentry a M e r manager task (t h e k t d the tasb
in the bcal agent). A tlag counter comrpoading to the requested cd! .. h mcrunented at thi ti.=-

190

1

1
I

. T b c f ~ c o b r b . t r w t r o r r ' *-tlrm~ya td u d t b e 1 . . b c m r p a d i t o t h e n b p m q . a r d c r L catria
t h t m q b e a l d

task W A G E R b i

adry DEPOSIT-El(MESG : iu MESSAGE);
gtrl D€POSITSI(MEPC : tn MESSAGE);

u t r y EXTRACT-El(MESC : oat MESSAGE);
entry EXTRACTSI(MESG : oat MESSAGE);

tuk body MANAGER b
EELAC: urry(l..MAlLENTBIEs) d INTEGER;

8ekCt
accept DEPOSlTSl(MESG : in MESSAGE) do - - depcmit the rneuage for el

ILFLAC(1) := EFLAG(1) + 1;
end;

a
when EJLAG(1) > 0 =>

accept EXTRACT-El(MESG : out MESSAGE) do - - extrut a mmmge from thebafferand retun it
EJLAG(1) := EJLAC(1) - 1

and;

end deet;
end bop;

end MANAGER;

I The m16r El iadkata the Ith entry poiat, and the su5x SI indiuteo the Ith subprogram. Thc structure d the entry taak for

191

acmotC Data Object Accca

Three chuuter'ptia of Ada data objects cause difficulty in developing a & a w d mrrhmii for handling refuence to remote
object.: I) the objects may be compaitc objects, 2) they may have coot- rumcq .ad 3) put. d a fdty u#cucluted
name may b e w c a rui.bk. pointi toobjcct8m& mwhincr,

' h e first 'hue murifcrtr i k K w h n om mmt cq#y 8 compaitc object (a8 oppoad to a compoaent d the abject) frwn one
site to another. For a a m p k , mpptme that site 2 - a record A on the right h a d d M rsignment s t r k n r n t and that A is
louted on site 1. Eventually, the mt and aystem umnt convezt A to a bit string for trammiaria. It would rwully
be desireable that tht put of the aptem that pUrorna the conversion not be amre of the structure d the object (from object
oriented design principka). However. if the object cont.inr a mmory ddrwa aa put of its structure, the resalt received could
be meaningless. For exunpk. suppose the record A contains a w h b l e kngth array, aa shown below.

rubtype S is INTEGER range l..MAX;
type I A k array (INTEGER range <>) of INTEGER;
type R(L: S := 1) I.

B: lA(l..L);
C: INTEGER := 0;

m o d

end mod;
A: R;

One deck n for the wmory allocation f a ...e rccocd m ~ t be to dbcrtc the storage .-lr the m y from a heap and place only
a pointer to the array (or possibly its dope vator) in the record. The need to perform whok object (record) assignawn& in
Ada might discourage such memory allocation schm, but neverthek9, it b cutrinly a pasribility. A bit b bit copy of the
block of data corresponding to the record A, would then copy this d k , w h i would have no usefulnam when received by
the requesting unit; in particular, the bit by bit copy of the record block w u l d not result in the array dues being transmitted.
To avoid thu probkm. the routine that d o a the fi0.l mesuge transmission must, indeed, c o n t r z j to the b e asumption,
have knowledge of the record structure so that the m y d u o themselves may be transmitted, and not just the addrns of the
may. Since 'IC are describing a prc-tramhtor approach that uses existing Ada compikrs, thb knowkdge is dependent upon the
implementation of the under1y.q compilers d.

To ste the second '&sue, suppose that site 2 contains a statement like X := A.C. How d o a one construct an a d d m for A-C?
Or describe, in a general way, to the agents what ckment is to be returned? The syntax 'A.C' exists only on site 2, and the
only information available there from the specification of the package containing A b the bgiicd record structure of A. not i t s
physical structure. Again, implementation dependent knowledge of the &a used for construction of the phy&al structure of
records is ncccsary.

If one WCR to now add a fourth component, D, to the type R above, that is UI act- type, and if the d u e d h.D were
to point to another record s t o r e d on site 3, the third issue a r k s . The method wed to cakuhte the address d the item to be
retrieved must not only contain impkmentatioa dependent knowkdnp. but i t must be dttributcd as well.

Stmlegkr for Remote Object Acecsr

We arc studying two mthods of obtaining c o m p i t c (as well aa scalar) objcctr: 1) usiry knowkdge of thc N ~ S for storye
allocation and physcial record and array construction, develop the distributed algorithm for calculating the address of t h e target
object and then implement t h e . paasibly in zrxmbly or some other l a r lcnl language, and 2) use m h i d impkamktation
dependent kmwkdge and the bgiid structure of rctotds and arr8ya to u t i l i s t m d u d Ada mchmism to perform tbc object
t raders . Weexpect the f o r m to kad to morrcomplct (in tapls dcodcsirc) r d u t k s . but to require a 100ce dcc.ikd knowkdge
d the internal workings of the underlying compikn, while the latter will require ks knowledge of the internal mcchanbmr used
by the compikrs at the expense d a larger aamunt of code (automaticdy generated. however) in the agents Since the latter b
.bo more in keeping with the phibsophy of using abting compikrs w b m F i b k with minimal knowledge d tbek internab,
and since d c r r b p i this appprorch will aid in dewdoping the algorithm for tbc 6rst appnrwh. we have follolcd thk one Erst,
and it b tbm om? t h t will be k r i b e d bebr. In subncquent WNk. we will explore the direct c d c u h t b n of object d h

192

Acces b remote ubjata h baaed upon the following W i g :

0 4n mumental type, TXNUM, rhwe d u e s are the nun& of every type and hld d e c l d io the pukage for which an
agent h being generated, and tboa in pukagra kluded via a witb.

0 An enumerated type, N-ENUM. whome values are the n u a a of every data object decked in the package for which an agent
is being generated, .ad tkme-ia

A dkth of CETPUT pmcedurea, one for each record or u n y type defined, w b a a fuoct*m are to either M k the
request for an object reference if the request is for .I! objat d the type the CETPUT handles. w to call another CETPUT
if the object requcsted b, or h derircd from. one d the fields of the m.
A variant message structure containing appropriate fielda indicating the type of data required, the fields within records to

iocluded vi. a with.

be used. and an actual data object of the type beiig referenced.

From tk perspective of the local agent. a remote d m t (not via access variablcr) data object access begins with the local
agent main task reeving a message fmm the postal system One of the hlda in thii record contains a d u e of type N-ENUM
that indicates the outermost name in the fully qualified name of the object being referenced. The local agent main task then
perforum a case statement on this d u e . There is thus a case for each object name. Each case calk a CETPUT procedure and
p~isses it the mcsrge, the object named, and a count of the number of name components to the fully contatenated lymc sought
(including array arguments).

procedure by simply copying a value between the appropriate field in the message record and the object passed to it. Another
field in the message record contains the type of the object t o be returned.

If the COUNT is not zero. then either an array e k m n t is being sought, or a fully concatenated name has not yet been fully
expanded. In the former case, the indica for the a m y ekment (or slice) are contained in other fields of the message record and
the CETPUT can select the appropriate ekment(s) of the may. These either directly satisfy the request or are wd to recurse
u dacribed next.

If the CETPUT is handling a record type, there will be another field in the message record corresponding to this type of
record which will contain a n l u e of type T-ENUM (contining the field name to be selected). The CETPUT contains a case
statement conditioned on this field indicator. There is t h s a case corresponding to e x h field poasibk in the record. The action
of each branch of the case is similar. Another CETPUT is calkd, passing to it the masr(le record and object pointed to by a
concatenation of the object name passed in and the corresponding Eeld name.

Below is an abstraction of a typical GETPUT routine for 8 record type. The fonm for other types are similar, but tend to
be even a bit simpler.

If the object pIuscd is a scalar object, the count will be zero and the request can be satisfied dir.c.1~ by 'he CETPUT -

procedure GETPUT(M: in out MESSAGE; OBJ: in out T; COUNT NATURAL) is
begin

COUNT := COUNT - 1;
if COUNT = 0 then - - the name is fully expanded

if <a get request> then

else

end if;
return;

- - copy value from OBJ to appropriate field in message record;

- - copy value from appropriate 6eld in message record to OBJ;

end ir;
case <field name from mezrage record> is

when F1 => CETPUTjM, OBJ.Fl,COUNT);

when FN => GETPL'T(M. 0BJ.FS.COUNT);
end case:

end;

ilere T is a record type of an object beins passed in. rrad P L F N are the 6 e b in the record type. If we of the fields. FI. say. were
an access nriable, tha t access variable would have been replaced by a record (as dcslribed in the pointer agent sectioo above)
and the action for the corresponding c a x would first check to see if the l r q u e y t e d object were on the current site or chcrhere. If
local. theu the call to CETPCT would be d e u shown above. If elsewhere. rhen an appropriate muage would be propagated
to the pointer agent on the i d i c a r d site.

193

Mas8age Ibcord StrrutPrr

Tba'mtaprocaamurr.trPc~L~btb.opartlolrdt&~ob~trrkrcncin(:wbcnu. Forcrsbrwrcep~bp.
a d i i

variant part dthe rccordcollt.inr &Idr fa d dth ugwnenta, .Od ifappliubh, a h t i o n nmh. Tbe Basd put dthe record

type in ~rcnbebrr. It s h o u k l b e a t K - a p ~ r y trrm the prevhm dlcorios

rccQnf type in de6d. .Thae mordn eocrirt d a w put M d a nvirnt put. Tbac i occoc d the
*ui.nt h crch dd8hobbt ddtwd hr tba p.cbca. h h B d 8 m b p m Q hd C d , th?

Cank'urr 6dd Wkctoar W h k b UT rud f a WCah &I& dIrradr, U h i h. A 8bpk -kd rsCOrd

type MESS-T(DATA-TYPE: TENm) b
record

OBJXNUM : NENUM ; - - indic.kr oukrmort object
TYPElSIELD : TENUM; - - typc TYPE1
TYPE2Xl : TYPE2Xl-T;
TYPE2xZ : TYPE2XZ-R

case DATLTYPE b

- - Zdim ur8y rJrpc TYPE2

- - rttlccta data b be exchanged
wben T Y P E l D =>

wben TYPE2D =>

when CALLlD =>

TYPE1-VAL : TYPE1;

TY PE2-VAL : TYPE2;

CALLl-ARGl : FLOAT,
CALLI-RESULT : FLOAT;

CALLZ-ARGl : INTEGER;
CALLZ-ARGZ : INTEGER

FLOAT-VAL : FLOAT;

INTEGERVAL : INTEGER

- - fiinction CALL1

when CALL29 => - - s u b p ~ 8 1 n CALL2

when FLOATD =>

wben INTEGERD =>

end case;
end record;

end;

Since the postal service dells with dl type of messages. a global message record type u &6ned. The gbbd mesuge m o d
a h CON& of a Bred pan. and a &ant pur. The various casea of the nrimt put are. .I one might guess, mrely the different
message mor& for each aourcc package. The 6xed put conhim the destination package number, and the return address, which
consb~s d the source site number, and a logical channel number.

The tnnshtbns required for the methods o u t l i i above invoke nllIDcrouI $tepa and ae quite involved. In thia section we
dexribe britfly the procedures to be used and a utility that has been prepurd to simplie IUC of the pre-truulrtor.
The first step in tht translation procedure ia to inaure that the program to be distributed b cormt. Thin is accomplished by

compiling it for a Jngk system. The pmgmnmer must do this before invoking the pre-translator.
When a correct program is avaihbk. the truulation and compilation procedure consists of the followii step: 1) determina-

tion of the d e r of pretrualation of source fib. 2) pretranshiin of source Bka, 3) prc-lik opcr~tion~, 4) determination of the
order d compilation of original SOUK~S (including agente) fa target situ, S) compiling and linking of individual site programs.
Two utilities have been written to frilitatc some of t h a step.

The pmompiht ion utility (ADAUTIL) will t r d t e the network of package dependem*ks implicit in a set d source files to
a set of 6,lC dependencies in Unix %ukehk9 format. The li of m h t source 6ks must be specified. and one nr more targets
(main p m) must be specified. S i c ch ardcr d pretrmslation is identical to the order d Ada compilation, ADAWTIL
taka an option spccilying whether a rnake6lt to run the prettuulator, or a d e 6 k to run the Ada compiler & daiml.

The secoad utility. cllkd MESSUTIL, perfom step three h. Tht opmtbm done duriw mtp 3 ue: 1) constructing
the global message recocd lrom dl rekvaat packqe mcrup records, 2) constructing a p.cw d pLcLsc rite comtantr, 3)
constructing main procedurem lot a c b site, and 4) comtnwtio(l a met. nukefik capibk of performing stcp. 4 and 5 above.

Twro scrip& rm written to simpm tbe pretrmrl.tioa process. One r r i p t performs slcp 1 to 3 a b . and tbc other invokes
the met. nukefik to perform stcp. 4 .ad 5. If any nm-Ada object modulQ need to be !inked into my site, the met. nuLefik
may be edited in between tbe tumiq dthe two scripts.

194

4. DISCUSSION OF THE APPROACH

One of ow principal concerns with the system developed b the run-time overhead usociated with the mrchaniram we d.
We can model this performance in term of the rubtime overhead .oociated with wioru kinds of remoc~ r e f e m a F r a n
the tat. performed in 1131 we kncm that t u k rendezvous timen exceed proccdum call t i m e by one md a half to tnw obn d
W i t u d e , and that task elaboration tiws ue several tima larger than rtndezvous time. We can Ibo reasonably expert tbr
network communications t i m a to be s iubk . For u u n p k message e n d - b n d times for MAP are on the o d e of iORm. mnm or
ksa independent of -e size 1141. for the Intel hypercube, a few milliionds. and for the NCUBE hypercube. several bundmd
microseconds to a millisecond, where the latter two depend somewlmt upon message she, the variable component of shr
being 1-10 micraucaads/byte 1151. We thus neglect all local procedure and function call times, and model ow overhcd in (mrr

of the number of messages and rendezvous required.
Thus, let 1, and 1, be the times to compkte a message transfer and local rendezvous. respectively and kt n: rad n: br

the number of m q e s and local rendezvous required for a remote operation of type o. Then, the time to complete a
operation is

In these cases, we rrpre?rent the overhead by the pair (nL,n:).
Whenever there are task elaborations involved. we represent the number by E. It is listed separately since it is gemerdly no(

necessary to do the task elaboration with each access, but only when tasks or procedures are Frst elaborated. NevertLk. . ms
thouRh many of t h e need be done only once imniediately after system load, the number of tasks in the sp:cm could haw a-
impact on the scheduling algorithms to be used and the efficiency of any runtime system, and the number E is thus important

n: -T, + n: - t ,

The following sections present briefly the costs associated with each of the remote operations.

Dola Objects - (2.4). E = 0

Access/Updates to data objects require two measages and four rendezvous. One -age is to send the request and the mud
to receive an acknowledgement. The rendezvous are for the mail system. This pmumcs that the requested object k m I& fima
remote site accessed. If there is a continuation to other sites through pointers, the above numben must be rnulitphd tq r h r
number of remote accesses required to satisfy the request.

Toak Objects - (2.6). E = # of entries

Task objects are accessed through entry calls. This requires two messages as for data objects and six rendrnous far s jnrhm
nization (4 for the mail system and 2 for the handler).

The number of task elaborations that need to be done initially is equal to the number of entries to the task. Entry calk to
task objects created from task types requiie no special handling by themselves. However, each task object created from i rrwxe
type requirc: two messages for creation and four rendezvous for synchronization. All further access are as in the c a z d t a k
objects.

Pracdures and Func!:ms -(2,6); E = 1

Since the local q e n t treats procedure and function calls in the same way as task entry calls, the analysis 'u analogous.

Point err

There are two factom to consider here, the overhead when the object pointed to is remote, and the overhead when the o b ~ t
is local. Remember that all pointers are replaced with records having a site number and a pointer. Thm requires that JI u r r s s n
via pointers begin with a check of whether or not the object is local or rrmote. If remote, the time of the chwh r i l l LH k ; g n i k m t
in comparison to the time required for the remote access and may be ncglected. In this case the overhead depends upon the type
of objected being referenced, and will follow the rauIts obtained abov-.

However, if the acccs is local. the overhead is more significant The exact amount of degradation will depend Jpon haa
an individual compilcr implements pointer accesses and if then else constructs. In a simple test in which we wrote u chcwnt
assembly !anguage code as we could for local pointer acccjses with and without the pointer record construct usrd hcrr. the
differerwrr: was a facror of four. In interpreting this, however, one must take into account the magnitude ai time in\or\ed
a few microseconds are the most) and the frequency of occurence. With these considerations taken into account. we do not 1-1
that much overall time will be added to local accesses.

Summary Anafyis Comments

To place the abme ar!dysa in perspective, one must compare typical times for mesage transfers and rendrrvam. Some
on& have been reparted fur an
iko the c m that t&r ti-

typical network t ima were mentioned above. Rendavous t i m a on the order of 500-600
8 mHz IBM PCjAT. and on the order of 300-400 mkmscconds for bfotoro!a 68OOO proc

195

have bccn dropping s;gnEc&r.x+ s i t h ne- xleasc of Ada ;ornpilers intended for real-time applications. and are predict4
by A& vendors tc k o w -wt wii*id-rabl\. malI.er over the tw*t)ear or two. Thus. except for the fastest rtworks. the mesJage
t i m a will either be c l m to the rendezvous t i m s or dominate them. and the approach taken will be primxdy irlfluenccd b! thr
netrork m g e tirn:..

There is fu;thtr 'usce that mj be of comern. :he number of tasks and CETPUT routines needed in thr local agmts. These
have a l i e u dependence upon the number oientria (and subprograrm) and t y p present in a remotely accc ed pachge. While
*.is may seem rather luge. me b not likcly to access a large number of thing remotely, and those that are a r c 4 r r m t r l y
M be p a c k e d separately from thasc that are not, thus keeping tllc number d extra tasks and routines to a minimum.

5. STATUS AND CONCLUSIONS

A t the p e n t time. the dntributcd translation sjrtem is operational for distributed packages with simple objects in thcir
riaibk puts, Le.. no record or array definitions. Scdu data objects. subprograms and declared tasks may be directly refercwed
(no t i m d or cuntiond caik). Tats have b t r : ~ succeniully completed with up to three VAX processors cooperatins 03 the
execution Ot a single program. The impkmentation of the strategy described for referencing arrays and records (with fully
concatenated names) is ~ e u l y complete. and expected to be in operation within a few weeks.

Nevertheless. there is still considerable work to be accomplished before the distribution of library packages and subprograms
b compkte. Although the strategy has been determined (see il6;). work has not yet been begun on handling timed,'conditional
task entry calls. Similarly, the dynamic creation of tasks is not complete. Two strategies will be implemented in this case. In
the first, the creatrd objects will be placed on the site elaborating the definition of the task type. In the second. the task object
r i l l be placed on the site creating the task through a declaration or new operator. The first is simpkr to -mpkment. but may
n u k e the task objects remote from the unit executing the code calling for their creation. while the second implementation is
considerably more complex. and as noted in :9:. may contain hidden remote object references. Finally, task ternination must be
properly handled.

More importantly, there are many 'ksues of language definition that must be addressed. Our work h a only addressed one
point in the problem space to date. homogeneous. loosely coupled systems with static distribution. Additional representation
mechanisms are needed to describe limitations dependent upon architectural considerations, to describe binding mechanisms,
and to describe processor types (so that implicit data conversions can be accomplished). Moreover, it is probably necessary to
require greater w of representational speciEcations on data objects to which remote access b allowed. Finally. there should be
a more explicit definition of the allowed units d distribution.

References
Ill R-, CAR.. 'Communicating sequential processes'. Comrnonicafions o/ the AC.\I. vol. 21. no. 9. Aug. 1978.

121 Strom. R.E. and Yemini. S.. 'NIL: an integrated language and system for distribcted programming", Sipplan '83 Symposium
on Rograrnrnrng Language ISJUCS in SoJfrurc Sysfemr. vol. 18, no. 6, June. 1983, pp. 7342.

[SI Liu. UT. and Chung-Ming Li. 'Communication distributed processes: a language concept for distributed programming in
k a l area networks'. Lad .Vetworks for Computer Cmmu-aicafions. IFIP Working Croup 6.4, International H'orkshop on
Local Setrwrk. -lug.. 1980. pp. sf-06.

!4! Van DenBos. J. and Plasmeijer. R. and Stmet. J.. 'Process comm. based on input specifications". .4C\/ Trans. a/ Program-
miry Languages 8 Spslems. vol. 3. pp. 12i-250. July. 1981.

IS! Andms. C.R.. J'ynchronizing resources'. ACM Trans. o/ Plogmmming Languages B System, vol. 3. no. 1. pp. 105-430.
Oct.. 1981.

(6: Mae. T.\V. and Yeh. R.T.. 'Communication Port: A Language Concept for Current Programming". I€€€ TMW. Softu.tlre
Eng.. rol. SE6. no. 2. pp. 19(-LW, Slarch. 1980.

i?] h l t . R.C.. 'A short introduction to concurrent tuclid". Sipplan .Vof.. vol. 17, no. 5, pp. -79. Slay. 19dz.

Ilansen. P.D., -Edhn-.% multiprocessor Language', So/lrcarc-Prac. and Erper.. vol. 11. no. 1, pp. 33-361. .?pril. 19WI.

is! V&. R.A. and Mudge, T.S- and Buzzard. C.D. and Krishnan. P., Translation and Execution of Distibutd Ada Program:
k It Still Ada? -. IEEE Transacttons on Softron. Spring 1987.

1101 51. Tedd. S- Cmpi-Rcghuzi. and A. Satdi. .Ida for rnulti-micropmressors. Cambridge University Pms, Cambridge. 1984.

Ill; D. Cornhill, 'Partitioning Ada program for execution on distributed system-. 1984 Computer Data Enpg. Con/..

112; Honeywrrll Systems R e a r c h Center. T h e Ada Program Partitioning Language'. the Distributed Ada Project. Spt.. 19%

196

?

1131 R.M. CIapp, L.J. Duchesneau. R.A. V&, T.N. Mudgq and T. Schultsc. "Toward real-time performance benchmub for
Ada,, Commrninlimu ACM. d. 9. w. 8. pp. 7-778. Aui. 1986.

(14; Vd., R.A. and Naybr, A.W., Find Report o/fhe .WF Workshop on .H.nu/acfnniy Sydcmr I n t c g m f i g held Novembc- ISUS
in St. Clair, Siche- and organized by the Robotii Systems Divisiin, Center I& Rcuarch o n Integrated Manufacrur;x,
Colkge of Engineering. T h e Univmity d Michigan, Ann Arbor, MI. 48109.1985

1151 Mudge. T. N.. G. D. Buzzard, k T. S. AbdeCRahman. 'A high Performance Operating System for the NCUBE," Proceedimp

[lS] Vdr. R. A. and T. Y. Mudge. Timi- b u s in the Du t r ibu td Execution of Ada Progum." to appear in special 'muc ea

o/ fhc 1986 Con/cnncc on Hypcrcrk , ~ ~ f p r o c c u o r r . Knoxrilk, TCIIO-, Oct. 1986.

P d k l and Dstributcd Processing. IEEE Tmnucfiar on Compatcrs. 1987.

. - .

--= System g-c

Figure 1: Loosely col;pled system upon which we seek dbtributed program execution

Figure 2: Ovrrail operation of translation system Figure 3: Structure d translated example program

197

